Acid Hydrolysis of Salicylaldehydato Chromium(II1) Complexes: Substituent Effects on Rate

H. ELIAS*, E. HORST, G. LANG* and M. WÜST

Anorganische Chemie III, Eduard-Zintl-Institut, Technische Hochschule Darmstadt, 61 Darmstadt, F.R.G. Received October 2, 1979

Introduction

It was shown previously [l] that the acid hydrolysis of $[Cr(SA)_3]$ takes place stepwise and can be described as a sequence of 3 pseudo first order

$$
\left[Cr(SA)_3\right] \quad \widehat{=} \quad \left(\bigotimes_{i=0}^{\infty} 0\right)_{i=0}^{\infty}
$$

consecutive reactions of decreasing rate:

$$
[\text{Cr(SA)}_3] \rightarrow [\text{Cr(SA)}_2(\text{H}_2\text{O})_2]^+ \rightarrow
$$

$$
\rightarrow [\text{Cr(SA)}(\text{H}_2\text{O})_4]^{2+} \rightarrow \text{Cr}_{\text{aq}}^{3+} \tag{1}
$$

The rate law for the hydrolysis of the three species Cr(SA)_3 , $\left[\begin{smallmatrix}1_2\end{smallmatrix}\right]$ $\left[\begin{smallmatrix}1_2\end{smallmatrix}\right]$ $\text{Cr(SA)}_2(\text{H}_2\text{O})_2$, and Cr(SA)_2 as found to be first order in complex, with the observed rate constant k_{obs} in each case being composed of an acid independent path and an acid dependent path according to (2) $[1, 2]$:

$$
k_{\text{obs}} = k_0 + k'[H^*]
$$
 (2)

It has been suggested $[1b, 2]$ that the acid dependent path results from the addition of a proton to a lone electron pair of the phenolic oxygen (fast equilib-

*Authors to whom correspondence should be addressed.

TABLE I. Analytical Data for the Complexes $[Cr(SA-X⁵)₃]$.

$$
k_{obs} = k_0 + k_1 K_1 [H^{\dagger}]
$$
 (3)

The present study deals with the effect of substituents $X⁵$ in 5-position of the salicylaldehyde ring on the rate of the acid hydrolysis of the cationic species $I = [Cr(SA-X⁵)₂(H₂O)₂]⁺$ and $II = [Cr(SA-X⁵) (H_2O)_4]^2$ ⁺. It was undertaken (i) to prove the expected dependence of the parameter k_1K_1 on the electron density at the phenolic oxygen as determined by the *para*-substituent X^5 (= H, Br, NO₂, Me, MeO) and (ii) to correlate k_1K_1 with Hammett's substituent parameters σ [3] on the basis of LFE relationships.

Experimental

The ligands salicylaldehyde (Merck) and 5 methoxy-salicylaldehyde (EGA-Chemie) were used without further purification. 5-Bromosalicylaldehyde [4], 5-nitro-salicylaldehyde [5], and 5-methylsalicylaldehyde [6] were prepared by methods described in the literature. The complexes $[Cr(SA-X⁵)₃]$ were prepared according to a procedure described elsewhere [2] . Their analytical data and melting points are compiled in Table I.

he cationic complexes $I = [Cr(SA-X^3)_2(H_2O)_2]$ ad $H = [\text{Cr(SA-X⁵)(H₂O)₄]$ ² were separated by cation exchange chromatography as described previously [2] .

The acid hydrolysis of I and II was studied in aqueous solution with $[HCO_4] = 0.5-2 N$, $I = 2$ M [NaClO₄), T = 41 °C and with [HClO₄] = 0.1–3 N, $I = 3$ *M* (NaClO₄), $T = 80$ °C, respectively. The spectrophotometric measurements and the determination of k_{obs} , k_0 , and k_1K_1 have been described $[1, 2]$.

 X^5 **k**₁K₁ × 10⁴ (s⁻¹) **k**₁K₁ × 10⁵ (s⁻¹) for $I^{\mathbf{a}}$ for $II^{\mathbf{b}}$ MeO 6.08 \pm 0.75 10.30 \pm 0.08 Me 4.57 ± 0.90 8.10 ± 0.07 5.52 ± 0.39 6.83 ± 0.14 H Br 4.69 ± 0.46 5.97 ± 0.18 $NO₂$ 1.53 ± 0.08 1.78 ± 0.02

TABLE II. Parameter $k_1 K_1$ for the Acid Dependent Path of the Acid Hydrolysis of *I* and II.

 ${}^{\bf a}T = 41$ °C, I = 2 M. $^{b}T = 80$ °C, I = 3 M.

Fig. 1. Hammett plot for the parameter $k_1 K_1$ on the basis of the substituent constant σ_p ; (a) refers to $I = [Cr(SA-X^5)_2$ - (50) ⁺ and b) to *II* = $(Cr(SA-X^5)(H_2O)_4)^{2+}$; the value of $u = 1.25$ for $X^5 = NO_2$ refers to $u = 131$.

Results and Discussion

One would expect that there are substituent effects on k_0 as well as on k_1K_1 . Rate constant k_0 , however, is determined by extrapolation and its relatively large limits of error do not allow to claim any substituent effects convincingly. Table II summarizes the values found for k_1K_1 upon acid hydrolysis of I and II as a function of substituent X^5 . The average limits of error obtained for k_1K_1 in the case of I are approx. $\pm 11\%$ as compared to approx. 1.6% only in the case of II . This relatively large difference in error is due to the fact that k_{obs} for *I* has to be determined by a subtraction procedure whereas k_{obs} for *II* is obtained directly $(II \rightarrow Cr_{aq}^{3*})$ is the last step in (1)).

As can be seen from Table II there is a small but distinct dependence of k_1K_1 on the nature of X^5 . It follows from a plot (see Fig. 1) of the logarithm of $(k_1K_1)_X$ s/ $(k_1K_1)_X$ s = H versus Hammett's substituent constant σ_p [3] that the relationship is linear in both cases (the correlation coefficients are 0.959 for *I* and 0.995 for *II*). The reaction constant ρ is negative and one finds $\rho = (-0.38 \pm 0.13)$ for I and $\rho = (-0.48 \pm 0.03)$ for *II*.

The result of the reaction constant ρ being negative and the fact that ρ_I and ρ_{II} agree within the limits or error support the mechanistic interpretation for the acid dependent part of the hydrolysis of I and II as presented earlier $[1b, 2]$. The protonation of the complex takes place at the phenolic oxygen and not at the carbonyl oxygen of the salicylaldehydato ligand since plotting of the data $versus$ Hammett's substituent constant $\sigma_{\bf m}$ (instead of σ_p) does not yield linear relationships (the correlation coefficients are 0.836 for I and 0.876 for II).

The higher the electron density at the phenolic oxygen is (see X^5 = MeO, Me, e.g.) the faster the reaction becomes. This is in agreement with the interpretation given earlier: increased electron density leads to an increase in K_1 , the protonation constant and, hence, to a correspondingly higher concentration of the protonated complex which is believed to be the intermediate for the acid dependent path (the direct proportionality between K_1 and the concentration of the protonated complex is valid as long as the condition $K_1[H^+] \ll 1$ is fulfilled). It is an open question as to what extent there are substituent effects on k_1 , the rate constant for the rupture of the Cr-0 bond.

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft and the Verband der Chemischen Industrie e.V. for support.

References

- a) G. Lang, H. Elias and W. Kirchner, *Chem. Ber., 109,* 2691 (1976). b) H. Blank, H. Elias, W. Gasz and G. Lang, *Chem. Ber., 110, 3026* (1977). c) H. Elias, P. Erb, G. Lang, M. Müller and C. Stöckle, Chem. Ber., 111, 1315 (1978).
- K. Bauer, H. Elias, R. Gaubatz and G. Lang, *Inorg. Chim. Acta, 36, 55* (1979).
- a) L. P. Hammett, J. *Am. Chem. Sot., 59, 96* (1937). L. P. Hammett, 'Physikalische Organische Chemie', Verlag Chemie, Weinheim (1973) p. 352.
- a) L. C. Raiford and L. K. Tanzer, J. Org. *Chem., 6, 722* (1941). b) R. 0. Clinton and S. C. Laskowski, *J. Am. Chem. Sot., 71* (1949).
- S. Dandegaouker, J. *Indian Chem. Sot.. 42, 323* (1965).
- L. M. Ligett and H. Diehl, Proc. *Iowa Acad. Sci., 52,* 191 (1945).