Acid Hydrolysis of Salicylaldehydato Chromium(III) Complexes: Substituent Effects on Rate

H. ELIAS*, E. HORST, G. LANG* and M. WÜST

Anorganische Chemie III, Eduard-Zintl-Institut, Technische Hochschule Darmstadt, 61 Darmstadt, F.R.G. Received October 2, 1979

Introduction

It was shown previously [1] that the acid hydrolysis of $[Cr(SA)_3]$ takes place stepwise and can be described as a sequence of 3 pseudo first order

$$\begin{bmatrix} Cr(SA)_3 \end{bmatrix} \cong \left(\bigcirc 0 \xrightarrow{0}_3 Cr \right)^3$$

consecutive reactions of decreasing rate:

$$[\operatorname{Cr}(\operatorname{SA})_3] \to [\operatorname{Cr}(\operatorname{SA})_2(\operatorname{H}_2\operatorname{O})_2]^* \to$$
$$\to [\operatorname{Cr}(\operatorname{SA})(\operatorname{H}_2\operatorname{O})_4]^{2*} \to \operatorname{Cr}_{\operatorname{aq}}^{3*} \qquad (1)$$

The rate law for the hydrolysis of the three species $[Cr(SA)_3]$, $[Cr(SA)_2(H_2O)_2]^+$, and $[Cr(SA)-(H_2O)_4]^{2^+}$ was found to be first order in complex, with the observed rate constant k_{obs} in each case being composed of an acid independent path and an acid dependent path according to (2) [1, 2]:

$$k_{obs} = k_0 + k'[H^+]$$
⁽²⁾

It has been suggested [1b, 2] that the acid dependent path results from the addition of a proton to a lone electron pair of the phenolic oxygen (fast equilib-

*Authors to whom correspondence should be addressed.

TABLE I. Analytical Data for the Complexes $[Cr(SA-X^5)_3]$.

$$k_{obs} = k_0 + k_1 K_1 [H^+]$$
 (3)

The present study deals with the effect of substituents X^5 in 5-position of the salicylaldehyde ring on the rate of the acid hydrolysis of the cationic species $I = [Cr(SA-X^5)_2(H_2O)_2]^+$ and $II = [Cr(SA-X^5)-(H_2O)_4]^{2^+}$. It was undertaken (i) to prove the expected dependence of the parameter k_1K_1 on the electron density at the phenolic oxygen as determined by the *para*-substituent X^5 (= H, Br, NO₂, Me, MeO) and (ii) to correlate k_1K_1 with Hammett's substituent parameters σ [3] on the basis of LFE relationships.

Experimental

The ligands salicylaldehyde (Merck) and 5methoxy-salicylaldehyde (EGA-Chemie) were used without further purification. 5-Bromosalicylaldehyde [4], 5-nitro-salicylaldehyde [5], and 5-methylsalicylaldehyde [6] were prepared by methods described in the literature. The complexes $[Cr(SA-X^5)_3]$ were prepared according to a procedure described elsewhere [2]. Their analytical data and melting points are compiled in Table I.

The cationic complexes $I = [Cr(SA-X^5)_2(H_2O)_2]^+$ and $II = [Cr(SA-X^5)(H_2O)_4]^{2^+}$ were separated by cation exchange chromatography as described previously [2].

The acid hydrolysis of I and II was studied in aqueous solution with $[HCIO_4] = 0.5-2 N$, I = 2 M [NaCIO₄), T = 41 °C and with $[HCIO_4] = 0.1-3 N$, I = 3 M (NaCIO₄), T = 80 °C, respectively. The spectrophotometric measurements and the determination of k_{obs}, k₀, and k₁K₁ have been described [1, 2].

X ⁵	М.р. (°С)	C(%)		H(%)		N(%)		Cr(%)	
		calc.	found	calc.	found	calc.	found	calc.	found
н	225-228	60.73	60.38	3.64	3.61	-	_	12.52	12.45
MeO	178180	57.03	56.61	4.19	4.24	-	_	10.29	9.44
Me	255	63.01	63.92	4.63	4.71	-	-	11.36	10.77
Br	288-290	38.68	37.93	1.85	1.79	_	_	7.97	7.94
NO ₂	210 (dec.)	45.83	45.74	2.20	2.30	7.63	7.53	9.45	not det.

Br

 NO_2

 X^5 $k_1K_1 \times 10^4 (s^{-1})$ $k_1K_1 \times 10^5 (s^{-1})$ for I^a for II^b MeO 6.08 ± 0.75 10.30 ± 0.08 Me 4.57 ± 0.90 8.10 ± 0.07 H 5.52 ± 0.39 6.83 ± 0.14

5.97 ± 0.18

 1.78 ± 0.02

TABLE II. Parameter $k_1 K_1$ for the Acid Dependent Path of the Acid Hydrolysis of *I* and *II*.

^aT = 41 °C, J = 2 M. ^bT = 80 °C, I = 3 M.

4.69 ± 0.46

1.53 ± 0.08

Fig. 1. Hammett plot for the parameter $k_1 K_1$ on the basis of the substituent constant σ_p ; (a) refers to $I = [Cr(SA-X^5)_2 - (H_2O)_2]^+$ and b) to $II = [Cr(SA-X^5)(H_2O)_4)^{2+}$; the value of $\sigma_p = 1.25$ for $X^5 = NO_2$ refers to σ_p^- [3]).

Results and Discussion

One would expect that there are substituent effects on k_0 as well as on k_1K_1 . Rate constant k_0 , however, is determined by extrapolation and its relatively large limits of error do not allow to claim any substituent effects convincingly. Table II summarizes the values found for k_1K_1 upon acid hydrolysis of *I* and *II* as a function of substituent X^5 . The average limits of error obtained for k_1K_1 in the case of *I* are approx. $\pm 11\%$ as compared to approx. 1.6% only in the case of *II*. This relatively large difference in error is due to the fact that k_{obs} for *I* has to be determined by a subtraction procedure whereas k_{obs} for *II* is obtained directly ($II \rightarrow Cr_{aq}^{3+}$ is the last step in (1)). As can be seen from Table II there is a small but distinct dependence of k_1K_1 on the nature of X^5 . It follows from a plot (see Fig. 1) of the logarithm of $(k_1K_1)_{X^5}/(k_1K_1)_{X^5} = H$ versus Hammett's substituent constant σ_p [3] that the relationship is linear in both cases (the correlation coefficients are 0.959 for *I* and 0.995 for *II*). The reaction constant ρ is negative and one finds $\rho = (-0.38 \pm 0.13)$ for *I* and $\rho = (-0.48 \pm 0.03)$ for *II*.

The result of the reaction constant ρ being negative and the fact that ρ_{I} and ρ_{II} agree within the limits or error support the mechanistic interpretation for the acid dependent part of the hydrolysis of *I* and *II* as presented earlier [1b, 2]. The protonation of the complex takes place at the phenolic oxygen and not at the carbonyl oxygen of the salicylaldehydato ligand since plotting of the data *versus* Hammett's substituent constant σ_{m} (instead of σ_{p}) does not yield linear relationships (the correlation coefficients are 0.836 for *I* and 0.876 for *II*).

The higher the electron density at the phenolic oxygen is (see $X^5 = MeO$, Me, e.g.) the faster the reaction becomes. This is in agreement with the interpretation given earlier: increased electron density leads to an increase in K_1 , the protonation constant and, hence, to a correspondingly higher concentration of the protonated complex which is believed to be the intermediate for the acid dependent path (the direct proportionality between K_1 and the concentration of the protonated complex is valid as long as the condition $K_1[H^+] \ll 1$ is fulfilled). It is an open question as to what extent there are substituent effects on k_1 , the rate constant for the rupture of the Cr-O bond.

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft and the Verband der Chemischen Industrie e.V. for support.

References

- a) G. Lang, H. Elias and W. Kirchner, *Chem. Ber.*, 109, 2691 (1976).
 b) H. Blank, H. Elias, W. Gasz and G. Lang, *Chem. Ber.*, 110, 3026 (1977).
 c) H. Elias, P. Erb, G. Lang, M. Müller and C. Stöckle, *Chem. Ber.*, 111, 1315 (1978).
- 2 K. Bauer, H. Elias, R. Gaubatz and G. Lang, *Inorg. Chim.* Acta, 36, 55 (1979).
- 3 a) L. P. Hammett, J. Am. Chem. Soc., 59, 96 (1937).
 b) L. P. Hammett, 'Physikalische Organische Chemie', Verlag Chemie, Weinheim (1973) p. 352.
- 4 a) L. C. Raiford and L. K. Tanzer, J. Org. Chem., 6, 722 (1941).
 b) R. O. Clinton and S. C. Laskowski, J. Am. Chem. Soc., 71 (1949).
- 5 S. Dandegaouker, J. Indian Chem. Soc., 42, 323 (1965).
- 6 L. M. Ligett and H. Diehl, Proc. Iowa Acad. Sci., 52, 191 (1945).